

Six pack off axis holography (Ramot)

code: 7-2019-1315

Natan Tzvi SHAKED, T.A.U Tel Aviv University, Engineering, Bio-Medical Engineering

A method for multiplexing six off-axis holograms into a single multiplexed hologram, where the multiplexing can be done optically or digitally.

BACKGROUND

We present a novel technology, which is able to yield the thickness profile of metrological samples and stain-free biological samples in six times more information contents compared to the state-of-the art, without loss of data. Off-axis holography allows reconstruction of the quantitative phase profile of the sample from a single camera exposure by inducing a small angle between the sample and reference beams, creating the interference pattern of the hologram.

OUR SOLUTION

Prof. Shaked's group has developed a novel technology called six pack off axis holography (6PH), a method for multiplexing six off-axis holograms into a single multiplexed hologram, where the multiplexing can be done optically or digitally.

ADVANTAGES

1. The multiplexing allows optimized usage of the spatial frequency domain by compressing six cross-correlation terms (each containing a different complex wavefront) without overlap and, thus, reconstruction of all of them.

2. 6PH allows a great improvement of the spatial bandwidth consumption of more than 50% compared to the best method previously proposed, and we believe it represents the optimal spatial bandwidth consumption for optical hologram multiplexing.

APPLICATIONS

The multiple wavefronts multiplexed into a single camera exposure can be different fields of view of the sample, different wavelength channels, different angular projections, different z slices, etc. For example, if six sample's fields of view are multiplexed into the single off-axis hologram, it means that the same number of camera pixels can be used to obtain a six-fold improvement in the field of view captured in each camera exposure, allowing more rapid profilometry of extended samples, such as silicon wafers.

INTELLECTUAL PROPERTY

Patent pending

Contact for more information:

Noam Greenspoon 🖂,

Ramot at Tel Aviv University Ltd. P.O. Box 39296, Tel Aviv 61392 ISRAEL Phone: +972-3-6406608 Fax: +972-3-6406675